Development and testing of a DNA macroarray to assess nitrogenase (nifH) gene diversity.
نویسندگان
چکیده
A DNA macroarray was developed and evaluated for its potential to distinguish variants of the dinitrogenase reductase (nifH) gene. Diverse nifH gene fragments amplified from a clone library were spotted onto nylon membranes. Amplified, biotinylated nifH fragments from individual clones or a natural picoplankton community were hybridized to the array and detected by chemiluminescence. A hybridization test with six individual targets mixed in equal proportions resulted in comparable relative signal intensities for the corresponding probes (standard deviation, 14%). When the targets were mixed in unequal concentrations, there was a predictable, but nonlinear, relationship between target concentration and relative signal intensity. Results implied a detection limit of roughly 13 pg of target ml(-1), a half-saturation of signal at 0.26 ng ml(-1), and a dynamic range of about 2 orders of magnitude. The threshold for cross-hybridization varied between 78 and 88% sequence identity. Hybridization patterns were reproducible with significant correlations between signal intensities of duplicate probes (r = 0.98, P < 0.0001, n = 88). A mixed nifH target amplified from a natural Chesapeake Bay water sample hybridized strongly to 6 of 88 total probes and weakly to 17 additional probes. The natural community results were well simulated (r = 0.941, P < 0.0001, n = 88) by hybridizing a defined mixture of six individual targets corresponding to the strongly hybridizing probes. Our results indicate that macroarray hybridization can be a highly reproducible, semiquantitative method for assessing the diversity of functional genes represented in mixed pools of PCR products amplified from the environment.
منابع مشابه
Fingerprinting diazotroph communities in the Chesapeake Bay by using a DNA macroarray.
Investigations of the distribution and diversity of nitrogen-fixing microorganisms in natural environments have often relied on PCR amplification and sequence analysis of a portion of one of the key enzymes in nitrogen fixation, dinitrogenase reductase, encoded by nifH. Recent work has suggested that DNA macroarrays provide semiquantitative fingerprints of diversity within mixtures of nifH ampl...
متن کاملNitrogenase genes in PCR and RT-PCR reagents: implications for studies of diversity of functional genes.
Studies of the diversity of microorganisms in the environment have been facilitated by use of PCR and reverse transcription PCR (RT-PCR). Inhibition of the PCR by complex sample matrices and low abundance of some target microorganisms require the use of high-sensitivity amplification procedures, involving a large number of cycles or nested PCR methods. Using these methods, we frequently observe...
متن کاملGenetic diversity of nifH gene sequences in paenibacillus azotofixans strains and soil samples analyzed by denaturing gradient gel electrophoresis of PCR-amplified gene fragments.
The diversity of dinitrogenase reductase gene (nifH) fragments in Paenibacillus azotofixans strains was investigated by using molecular methods. The partial nifH gene sequences of eight P. azotofixans strains, as well as one strain each of the close relatives Paenibacillus durum, Paenibacillus polymyxa, and Paenibacillus macerans, were amplified by PCR by using degenerate primers and were chara...
متن کاملDiversity of heterotrophic nitrogen fixation genes in a marine cyanobacterial mat.
The diversity of nitrogenase genes in a marine cyanobacterial mat was investigated through amplification of a fragment of nifH, which encodes the Fe protein of the nitrogenase complex. The amplified nifH products were characterized by DNA sequencing and were compared with the sequences of nitrogenase genes from cultivated organisms. Phylogenetic analysis showed that similar organisms clustered ...
متن کاملNitrogenase Gene Amplicons from Global Marine Surface Waters Are Dominated by Genes of Non-Cyanobacteria
Cyanobacteria are thought to be the main N(2)-fixing organisms (diazotrophs) in marine pelagic waters, but recent molecular analyses indicate that non-cyanobacterial diazotrophs are also present and active. Existing data are, however, restricted geographically and by limited sequencing depths. Our analysis of 79,090 nitrogenase (nifH) PCR amplicons encoding 7,468 unique proteins from surface sa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 70 3 شماره
صفحات -
تاریخ انتشار 2004